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The time-dependent statistics of binary linear lattices is investigated on the 
basis of a master equation at the microscopic level. It is assumed that the 
kinetics may be formulated as transformations of specified sequences of 
clusters of A units and B units into other specified sequences. On the basis 
of a Stosszahlansatz, a master equation at the macroscopic level is derived. 
In the limit of a large system, the densities of clusters of all types satisfy 
rate equations similar to the equations of chemical kinetics. An H-theorem 
is proven and the nonequilibrium thermodynamics of the system is studied. 
The theory has application to the kinetics of the helix-coil phase transition 
in biopolymers. 

KEY W O R D S :  Nonequilibrium statistics; polymers; helix-coil transition; 
chemical kinetics; Ising chain. 

1. I N T R O D U C T I O N  

The s tudy o f  the kinetics o f  b inary  l inear  lattices has appl ica t ion  to a range o f  
physical  systems The systems under  cons idera t ion  may  be represented sche- 
mat ica l ly  by  a l inear  a r r ay  o f  N units,  each o f  which can be in either o f  two 
states,  A or  B. A nonequi l ib r ium state o f  the system is described by a p rob-  
abi l i ty  d i s t r ibu t ion  p(s, t)  on  the set o f  configurat ions  s :-- ( s l ,  s~. ..... s,v), 
where  the var iables  st take  the values A o r  B. I t  is assumed that  the micro-  
scopic  kinetics o f  the  system is known and  tha t  the t ime dependence 
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of the probability distribution is governed by a master equation 

~ s ,  t)/et : ~ [w(s, s') p(s' ,  t) - ,,'(s', s) p(s, t)] 
II1" 

(1) 

where w(s', s) is the transition probability per unit time for the transition 
from the configuration s to s'. Both internal stochastic interactions between 
units and interactions with an external agency or heat bath can give rise to the 
transitions. In each physical situation, the magnitudes of the transition prob- 
abilities must be found from a more detailed microscopic theory. It is the 
purpose of this paper to develop methods for the approximate solution of the 
master equation (1). 

Approximate methods are desired because Eq. (I) can rarely be solved 
explicitly, an exact solution being feasible only for some special choices of the 
transition probabilities. ~l-s~ The w(s', s) are characterized partly by the time- 
independent equilibrium solution of (1). Briefly, exact solutions are limited 
to the case where the equilibrium is that of-the Ising chain with nearest- 
neighbor interactions in the absence of a magnetic field, or without inter- 
actions in the presence of a ma~et ic  field. The approximate method of 
solution developed in the present article applies to a wide class of systems 
characterized by equilibrium statistics in which clusters of neighboring A 
units or B units are statistically independent. The lsing chain is included in 
this class as a special case. 

Our work was inspired mainly by its possible application to the theory 
of  the kinetics of  phase transitions, in pai-ticular the helix-coil transition in 
biopolymers. An elaborate and lucid discussion of the equilibrium statistics 
is given in the monograph by Poland and Scheraga, ~8~ where extensive re- 
ferences to related work may be found. Some additional features of equilib- 
rium which bear relevance to the present work were elucidated in a previous 
article, c7~ to be referred to as I. Alternative approaches to the time-dependent 
problem with specific reference to the helix-coil transition were proposed 
previously in the work by G6, ~s~ Schwarz, ~ Craig" and Crothers, ~x~ and 
Silberberg and Simha. ~ 

Our approximation method is based on a contracted description in terms 
of the occupation numbers of the different types of clusters, In Section 2, a 
master equation for the probability distribution of these variables is derived 
on the basis of  a plausible Stosszahlansatz. Since the occupation numbers are 
extensive variables proportional to the total number of units N, the formal 
parameter expansion of van Kampen ~12~ may be applied. The transition 
probabilities w(s', s) are formulated in terms of reactions of sequences of 
neighboring clusters. It is shown in subsequent sections that the macroscopic 
equations for the densities of clusters of all types are very similar to the rate 
equations of chemical kinetics. It should be stressed that these equations are 
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rigorously valid in the limit N--~ ~ once the coarse-grained master equation 
is assumed. The general features of  the macroscopic rate equations are 
discussed in analogy with the theory of chemical kinetics/ta~ An//- theorem is 
derived and its relation to the nonequilibrium thermodynamics of the system 
is studied. In the final section, we briefly discuss possible extensions and 
applications of  our work. 

2. S T O S S Z A H L A N S A T Z  A N D  COARSE-GRAINED MASTER 
E Q U A T I O  N 

As mentioned in the introduction, our analysis is based on a description 
of  the system in terms of occupation numbers of A clusters and B clusters. In 
order to make this more explicit, we note that each configuration s is also 
completely specified by a linear sequence of At and B,,, clusters, e.g., 

Ah, Brae Aq, Bm~,..., A~, (2) 

Let na~ be the number of A, clusters in the configuration s, and nB,, the 
number of  Bin clusters. We shall abbreviate n~ -- nA~ and n,, -- nB.. A state x 
of  the system is defined by the set of occupation numbers x = {n~, n,,}. We 
define 

ira~ 
I--I m=l 

MA= ~n,,  MB= ~ n,,, 
l~l m=l 

(3) 

Note that Na + Nn = N and that Ma and Ms can differ at most by unity. 
The total numlxr of configurations s giving rise to the same set of occupation 
numbers x is 

Q(x) = {MA(x)I/I-I, n,t.][Mn(x)!/II,, n,,!](l + SMA.MB) (4) 

Sometimes, it is convenient to specify the nature of the end clusters r 
e.g., .Q~t(x), where i and f t ake  the values A or B and indicate the nature of the 
first and last clusters. The number Qi1(x) is given by (4) with omission of" 
the last factor. 

We assume that the thermal equilibrium situation has the properties 
described in I, i.e., in equilibrium clusters are statistically independent with 
weight factors 

u~ = exp[--r vm = exp[--(,,/ksT] (5") 
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where ks is Boltzmann's constant and T absolute temperature, so that the 
total weight of the state x is 

a(x)  = I-I ~' .... u I v m (6) 
l~rti  

For simplicity, we neglect that the end clusters frequently have different 
statistical weights. In equilibrium, the statistical weights of all configurations 
s corresponding to the same state x are equal. The equilibrium probability 
distribution is 

p,q(s)  = P~q[x(s)] /~[x(s)]  (7) 

with 

p ~ ( x )  = ~(x)a(x) /z ,~  (8) 

where Z ,  is the canonical partition function. 
We assume that the transition probabilities w(s', s) may be classified in 

terms of reactions of  sets of  neighboring clusters. For example, an important 
reaction will be 

As + B., + Ar  ~ A~+.,+v (9) 

where by definition the clusters named on the left-hand side must occur as 
neighbors, in the order written, somewhere in the configuration s, and s' 
differs from s only in the replacement of the clusters (A,B.,Av) by Az+,~.v �9 
The most general reaction of this type is 

�9 : Ckl + C~, + -" + Ck.-+ Ck~ + Ck~ + "'" + C~ b (10) 

where C~ indicates either an A~ or a Bm cluster. Of course, A and B clusters 
must alternate in both the initial and final complexes. The reaction (1(3) will 
be written for short 

r: {C)r ~ {C'}r (11) 
where {C}r is the ordered set of reactants and {C'}r the ordered set of reaction 
products. Apart from the ordering, a reaction is characterized completely by 
a set of stoichiometric coefficients {v~.,, Vm.~}. The coefficient V~.r (or vm.,) 
equals the number of times the cluster Az (or Bin) occurs on the right side of 
the reaction equation minus the number of tim~s it occurs on the left side. 
The stoichiometric coefficients satisfy the following constraints: 

~, V,.r = ~_. v,,,., 
| m 

Z,h',.,+Z,m,',~., = o 
! m 

0 2 )  
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The first constraint implies that the total number of (dis)appearing A clusters 
must equal the total number of (dis)appearing B clusters. The second con- 
straint implies that the total number of units N is conserved in reactions. In 
most physical applications, only simple reactions involving a small number 
of  reactants and reaction products will be of any importance. 

Our statistical analysis is based on the following Stosszahlansatz: If at 
some initial time t, the probability distribution p(s, t) is uniform over the set 
of configurations s corresponding to the state x and if this is true for all 
states x, then to a good approximation, uniformity is preserved in the course 
of time. 

The Stosszahlansatz implies that the original master equation (1) which 
is valid on a microscopic level may be replaced by a master equation valid on 
a more macroscopic level. Define the probability distribution P(x, t) by 

e(x ,  t) = y.  ?(s, t) 8Ix(s) - x] (13) 
$ 

Ifp(s, t) is uniform over s s x, one has 

P(x, t) = p(s, t)f2(x) (14) 

Summing (1) over s ~ x and assuming uniformity, one derives the following 
master equation for P(x, t): 

oe(x, O/at = ~ [W(x, x') P(x', t) - W(x', x) P(x, t)l (15) 
I "  

where the transition probabilities W(x', x) are found from w(s', s) by aver- 
aging over the initial configurations s E x and summing over the final confi- 
gurations s' e x', 

W(x', x) = ~ w(s', s) 8[x(s') -- x'] 8[x(s) -- x]/.Q(x) (16) 
II)$ S 

According to the Stosszahlansatz, the master equation (15) is valid at all 
times. 

As usual in the derivation of master equations on a macroscopic level, it 
is difficult to assess the range of validity of Eq. (I 5). Presumably, this range is 
wider the larger the total number of units N and the simpler the reaction 
kinetics implied in the transition probabilities )~[s', s). We hope to investigate 
the validity of Eq. (15) in more detail for cases where the original master 
equation (1) may be solved exactly. 

The same coarse-graining employed in the derivation of (15) may be 
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applied to the calculation of averages of observablesf(s). The time-dependent 
average is 

~ ( s ) ) ,  = y ~ / ( s )  p(s,  t) 
| 

~ F(x) P(x, t) (17) 

where F(x) is the smoothed observable 

F(x) = ~ / ( s )  ~[x(s) - x]/.O(x) (18) 
I 

Of course, when f(s) is uniform over s c x, the second equality in (17) is 
exact. We shall, in fact, deal exclusively with observables of this type. 

3. CALCULATION OF TRANSITION PROBABILITIES 

In this section, we shall evaluate the transition probabilities W(x', x) 
from the microscopic transition probabilities w(s', s) using Eq. (16). It is 
conveDient to make explicit the occurrence of a reaction r of the type (I I) in 
the transition s - *  s' by the notation Wr(S', S). The microscopic transition 
probability may be written 

w,(s', s) = "r  Sr(S', S )  (19) 

where oJr is the elementary rate constant for the reaction r and where ~,(s', s) 
is unity i fs  and s' differ by the occurrence of the reaction r and is zero other- 
wise. Let ~r(s) == n({C), ; s) be the number of times the initial complex {C}, 
occurs in the configuration s. Then, the number of possible reactions r taking 
the state x to x' is given by 

Y~ ~,(s',  s) ~[x(s') - x'] a[x(s) - x]  
| s i s  

= a(x  - x' + ,,,) Y. ~r(s) 8[x(s)  - x] (20) 

where the stoichiometric vector Vr is a shorthand notation for the set of 
stoichiometric coefficients {vt.,, v,,.r}. Hence one finds, using (16), 

W,(x', x) = wr~,.(x) ~$(x -- x' + vr) (21) 

where ~,(x) is the average number of possibilities for the reaction r to start 
from the state x, 

r = ~ ,v,(s) 8[x(s)  - xl/S~(x) (22) 
| 
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or, in case we restrict the average to configurations with specified end condi- 
tions, 

�9 ,(x; i f )  = (n({C},))~ I (23) 

In the average (23), all configurations s r x with end conditions (i, f )  receive 
equal weight 1/-Qit(x). 

We introduce the notation 

*, = " t , ' -  Yr (24) 

where Y~ =--{Yz.~,Y,, , .r} counts the reactants in the reaction r and 
- -  I t " t / =  {)'t., ,'/,,.~} counts the reaction products. By definition, all components 

of ~,~ and u  nonnegative. Let a denote whether the last cluster before the 
initial complex {C}r consists of A's or B's and let/3 be the corresponding 
indicator for the first clu~ter following {C}~. Then, the average (23) may be 
written 

(n({C},))/t = ~ .Qi~Cx') OBf(x ") 8(x' q- x" § 7~ -- x)/-Qi'(x) (25) 
lit s~  I m 

since the complex (C}, must occur somewhere in the chain, if at all, and when 
its position is specified, we must count the number of configurations consistent 
with x. Hence we may also write 

(n({C}r))[ 1 = [MA(x) -- rnA({C},) + 1 -- t~,AS~A -- 81ASa.4] .Q'(x -- yr)/.QJ'f(x) 
(26) 

where mA({C}r) is the number of .4 clusters in {C}r and where ~ ' (x -- y,) is 
defined by (4) with omission of the last factor. The first factor in (26) is just 
the total number of possible positions of the complex {C}~ on the chain of 
clusters with specified end conditions. The second factor then counts the 
remaining degeneracy. As an example, we evaluate the average (26) for some 
simple initial complexes, namely {C}, --- A~B,,, and {C}r ---- A,B,,,Ac, 

( n ( A ~ B , ~ ) ) ~ I  = { ( M . ,  - -  8,. , ) /[M.,  + ~,,(~,., - -  ~z~)]}  n~n~/n. ,  

< n ( A L B , , A c ) ) ~  l = n~n,,,(nc - -  8u . ) /M.4  M s  (27) 

Thus, using (21), (23), and (26), one finds an explicit expression for the 
transition probability W,(x', x) in terms of the occupation numbers and the 
elementary rate constant co,. 
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4. DETAILED B A L A N C E  

In most applications, reactions occur in pairs of forward and backward 
reactions, e.g., 

a : {c}a  --- { c ' } .  
(28) 

b : { c ' } o - ,  { c } .  

Obviously, 

{ c h  = { c ' L ,  { c ' h  = {c}o 

An arbitrary convention may decide whether a reaction is forward or back- 
ward. We assume that for all reaction pairs, a detailed balance relation holds 
between the forward and backward rate constants oJ~ ~_ to({C'},l{C}o) and 
a,~ = to({C}al{C'}~) of the form 

, , ,({c'}o i { c } . )  [-[ "' . . . . . . .  " " u, ~., = ,o({c}o !(c'}o) I-[ u,', . . . . . . .  L,~ (30) 

This is equivalent to a detailed balance relation between the transition pro- 
babilities W~(x', x) and Wb(x', x), namely 

W~(x', x)P~a(x) = z,'~(x, x')/'~q(x') (31) 

In order to show the equivalence, we derive (30) from (31). Using (21), one 
finds from (31) 

toaOo(x)Peq(X) = o~bOb(X Z_ v~)eeq(X -t- v~) (32) 

Inserting the explicit expression (8) for the equilibrium distribution and the 
expression (26) for the average frequency of occurrence of initial reaction 
complexes, one easily deduces (30) from (32) when use is made of the obvious 
relation 

Ma(x') -- m.4({C%) = M.ffx) -- mA({C}~) (33) 

and the fact that the nature of the end clusters in the sequences {C}a and 
{C'}, must be the same. 

If  all reactions are paired in the above manner, one derives a detailed 
balance relation for the total transition probabilities, 

W(x',  x)eeq(x)  = W(x, x3Peq(x3  (34) 

by summing (31) over all forward and backward reactions. Equation (34) is 
sufficient to ensure that any initial distribution P(x, t) tends to a limiting 
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distribution proportional to Peq(X) within every subset of  states x mutually 
connected by nonvanishing transition probabilities. Ifall states xa re  mutually 
connected, P(x, t) tends to Peq(x) as t tends to infinity. 

S. RATE E Q U A T I O N S  

From the master equation 05) ,  one easily derives equations for the 
moments of  the probability distribution P(x, t). For our purposes, only the 
first two moments are of  interest. They are defined by 

where 

(x ) ,  -~ ~ xP(x,  t) 

(,dx ,dx)t = ~ ,dx Ax P(x, t) 
(35) 

Ax ---- x -- ( x ) , .  (36) 

From (15), one finds, using (21), 

(a/at)(x), = ~ ,,,,~,,(r 
f 

(alat)(.dx ax)t = ~ , , ,b, ,(Ax •,(x)), + ( d x  r ~,, + v,~,(O,.(x))t] 
�9 (37) 

Evidefftly, the rate of change of the first two moments is determined by 
higher moments of the distribution. This leads generally to a hierarchy of  
coupled moment equations the solution of which is as difficult as the original 
master equation (I 5). 

At this point, we make use of the redeeming feature that one is usually 
interested in the behavior of  large systems. In the limit N - ~  oo, exact equa- 
tions may be derived for the first two moments. Essentially, this is a conse- 
quence of  the central limit theorem, which states that under general condi- 
tions, probability distributions of sum variables become Gaussian in the 
limit of  a large number of variables. In our case, the variables are the confi- 
gurations s and the sum variables are the states x. For the explicit formal 
derivation, one may use van Kampen's parameter expansion of  the master 
equation uz~ and reduce the equation to a Fokker-Planck equation. In the 
present case, the large parameter is the total number of  units N. Higher-order 
corrections may be obtained by systematic expansion. In this paper, we shall 
deal exclusively with the macroscopic rate equations for the first moments 
(x) t  and leave the study of fluctuations to future work. In I, we have already 
studied fluctuations in equilibrium. 
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Van Kampen's work is based on the observation that for probability 
distributions of interest, one has in the limit of large N, 

(x)e = N~t) + O(N ~/~) (38) 

where p(t) ~ {p~(t), p,,,(t)} are the densities of A clusters and B clusters on the 
chain. Similarly, one finds, using (26), 

(~,(x)) ,  -- Np [-I f~"'f~"'" -F O(N 1/2) (39) 
| ,m  

where p is the total A- or B-cluster density defined by 

~t) = ~m (1/N)(M~>, = E m(t) = E p,,,(t) (4O) 
l r t l  

The cluster probabilitiesfz and f,,, arc defined by 

A = p~/p, k = t, m (41) 

Note that (39) is in agreement with the expression (I.4.8) derived for thermal 
equilibrium. From (37)-(39), one finds in the limit N - ~  oo, the macroscopic 
rate equations 

ap/~t = p T, " J ,  (42) 

where the reaction rates Jr are given by 

J, = ~o�9 H f~"�9 (43) 
l,m 

Summing (42) over the components I or m, one finds that the total cluster 
density varies according to 

r = - -  [ ' ( t ) p ( t )  ( 4 4 )  

where the total coagulation rate l'(t) is given by 

r ( t )  = E , ' ~ , ,  ,d,  = - T. ~,.,  = - T. v, . . ,  (45)  
r l r a  

Using (44), one may write (42) alternatively as an equation for the cluster 
probabilities f k ,  

( ~ / ~ t )  - r f  --= Y. , , J ,  (46) 

This is a closed set of equations of  the same type as the rate equations for a 
reacting mixture of" chemical species. From the solution of (46) one may 
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calculate the coagulation rate F(t), and hence from (44), the cluster density 
p(t), for given initial conditions at time t = 0. 

A macroscopic quantity of independent interest is the average A fraction. 
In the limit N--~ 0% it is defined by 

O(t) = Y. lp,(t)  (47) 
1 

From (42), one finds that its rate of change is given by 

where 

(e /S t )  O(t) = --? ~ Jr~r (48) 
l" 

A, = - -  ~ .  Iv, . ,  = Z m, ' . , , r  (49) 
1 rn  

Again, the complete solution of the rate equations (46) is needed for the 
evaluation of O(t). 

6. DETAILED BALANCE A N D  H-THEOREM 

We specialize to the case that all reactions occur in pairs of forward and 
backward reactions. The rate equations (46) may then be written 

( e f l e t ) -  r f  = Y~ ,,o(Jo - -  Jb) (50) 
Q 

and the coagulation rate P is 

r = Y. (:o - A) ,~o (50 
a 

where we have used 

v, = -~,~ (52) 

�9 The detailed b-lance relation (30) may be cast in the form 

,o, 1-I ( : W  ''o 0'~" . . . .  .,b l I  (fW;," (:~)'=," (53) 
| , m  l,r 

where we have used the relation 0.4.1) 

f["  = Zo'u,/U(zo), 1 ~  = zo'%,lV(zo) 04)  

Here, Zo is related to the equilibrium free energy per unit qOeq by 

Cpeq = k n T  In zo (55) 
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and the denominators are normalizing factors. The smallest root of the 
condition 

U(zo)V(z o) = 1 (56) 

determines the magnitude of z 0 . Using (56) and the constraints (12), one 
easily shows that (30) and (53) are equivalent. From (43), it follows that the 
detailed balance relation may also be written 

.t~*= J ~  (57) 

Hence in equilibrium, F ea = 0 and ~ f e q / ~ , l  = O. 
The detailed balance relation permits us to derive an important in- 

equality which is of use in proving an H-theorem. We define noncquilibrium 
chemical potentials by 

p~ = kep,, -F k n T  ln(fk/ f~q),  k --  I, m (58) 

and corresponding affinities 

a t r  ~ - -  E l~l, r/d'l - -  E l"nl.r/Zm 
| 11| 

= - - k n T  ~ V,.r In(A/f::) - k n T  ~ v,,,., ln(f,,/.f~) (59) 
l m 

Evidently, the affinities vanish in equilibrium. For each pair of forward and 
backward reactions a and b, one has 

at.  = - a tb  (6o) 

and the affinity at~ may also be written 

a t , / kBT  = ln (J , , / J '~  --  ln(Jb/J~ q) (61) 

where we have used (24) and (43). Hence one finds for each pair of reactions 
a and b using the detailed balance relation (57) 

a t J ,  + atJb 

= kaTJ 'a ' [ (JdJ~  ~)  - -  (JdJ~,~]~n(JJJ '~  ~) - -  l n ( J J J ~ ) ]  >1 0 (62) 

with the equality sign holding only in equilibrium. If  all reactions occur in 
pairs of forward and backward reactions, one has 

at,.J, I> 0 (63) 
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Now, define the H-function 

. = .  [~I,,~ + z:.. ,~ (64) 

Then, one finds by straightforward calculation from the macroscopic rate 
equations in the form (44) and (46) 

dt-t/at = -- (p lknT)  Y. CT,J, <~ 0 (65) 
r 

with the equality sign holding only in equilibrium. Hence H decreases mono- 
tonically till it reaches its value zero in equilibrium. The function H therefore 
serves as a Liapounov function and the system of rate equations is asymp- 
totically stable in the sense of Liapounov. For any initial state, the cluster 
probabilities fz and f ,  and the cluster density p eventually attain their 
equilibrium values as t tends to infinity. 

7. N O N E Q U I L I B R I U M  T H E R M O D Y N A M I C S  

The H-function introduced in the preceding section is closely related to 
the nonequilibrium free energy of the chain, as will now be shown. From (4), 
it follows that in the thermodynamic limit N -~ 0% the entropy per unit when 
the system is in the state x is given by 

s = lim ( l / N ) k n  in -Q(x) 

= ~. [(~ ~,)'n (Z, o,)- Z, ~,'o~, 

+ (Z.-)'~ (Z,-)- ~.,,,'" ~,,] <66~ 

The energy per unit is 

e = ~.. ' i m ( I / N ) ( ~ "  1" l + [ I " . ,  "-,1 

= Z p,e, -{- y, p,,,,,,, (67) 
i m 

where e~ is the energy of  an A~ cluster and e,,, the energy o f a  B,, cluster. As 
has been discussed in l, these energies incorporate both internal cluster 
energies and interactions with neighbors. The nonequilibrium free energy per 
unit is given by 

ep = e -  Ts (68) 

822/6/z-3 
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The free energy may be regarded as a functional ~(p) of the cluster densities 
p~ and p .... We recall that the cluster densities satisfy the constraints 

p, = ~.  p., (69a) 

Ip, Jr ~ mp,~ = 1 (69b) 
| m 

The first constraint is a consequence of the fact that A and B clusters alternate 
on the chain, and the second arises from the expression of the total number of 
units in terms of the cluster densities. 

Minimizing 9~(p) with respect to the cluster densities pz and p,,, subject to 
the constraints (69), one finds the conditions 

~ + kBT in(p~q/p~ ~) + ~b -- I~o = 0 

~.,. + ~ 1  ~ = kaT In(p /p,,,) --' ,d, -- rn/~0 0 (70) 

where ~b is the Lagrange parameter corresponding to the constraint (69a) and 
Fo the Lagrange parameter corresponding to (69b). Hence one recovers the 
expressions (54) for the equilibrium cluster probabilities 

"~ zo'[ p( /k r ) ] /u(  ) j | ~ e x  - - E  l B Z0 

(71) 
f,~ = Zom[exp(-~,./kBT)]/V(zo) 

with the interpretation 

~o = ~peq : kBT In z0 

d2 -~ - -kaTIn  U(zo) = kaT  in V(:o) (72) 

The entropy per unit (66) may also be written 

s = --kap [~fz  inA E- ~ f . ,  In f,.] (73) 

Using (69) and (71], one finally finds that the H-function and the nonequili- 
brium free energy are related by 

- - - - -  r --}- k a T H  (74) 

From the H-theorem (65) derived in the previous section, it follows that the 
free energy per unit ~ decreases monotonically to its equilibrium value ~eq �9 
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Finally, we note from (58) and (69b) that the free energy may be expressed in 
terms of  the chemical potentials by 

= E p~', + E p,,,~',,, (75) 
m 

so  that ~0 may be interpreted as the Gibbs free energy. 

8. EXAMPLES OF SOME SIMPLE REACTIONS 

As an illustration of  the theory developed in the preceding sections, we 
treat some examples of  reaction equations which, because of their simplicity, 
will be of importance in physical applications. As a first example, we consider 
A growth by p units. A typical member of  the set of forward reactions is 

~! .  m): At -t- B,..--- Al~. + B,._. 

The corresponding backward equation is 

b(l. m): A,+~ + B[~--I ~ - -~  At + B,n 

The stoichiometric coefficients are 

Hence 

v~..~ = - -8z ' . z  + 8~' . t+~ ,  v.,... = --8,,,. .... + 8,,,. ..... , 

(76) 

(77) 

(78) 

A = 0, A~ = --p (79) 

so that the coagulation rate F vanishes identically. The reaction rates are 

Jo(,.m, = o , ~ . . . J , f , . .  Jb...,) = o,b..m,A+~._~ (80) 

where the rate constants read more explicity 

(o~u.m) = a)(A,+),B,,_~,IA~B,n) ---- ~o+(l, m)  

a)bu.,. ) = a)(A,B,,,[At+)B,,,_.) = a)_(l + p,  m - -  p)  (81) 

The detailed balance relation (30) reads 

w+(l. m)utvm : ta_(! + p,  m - -  p)ut+.v,, ,_. (82) 

822/6/1 =3" 
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The rate equations (46) are 

afd~t 

= Z f = [ o , + ( t - e .  m ) f , _ o  + o ,_ ( t  + t', " 0 f , + .  - o ,+(t ,  re)f, -o~_(t, m ) f , l  
t i t  

Of./~t 

= ')-' .At,o+(/.  m + p ) f , . + ~  + o,_(t ,  m - t ' ) f , . - ~  - o,+(t ,  r e ) f , .  - o ,_(t ,  m ) f , . ]  
l 

(83 )  
The rate of change of the A-fraction 0 is, from (48), 

aO]ht = pp ~" [oJ.(l, m) -- oJ_(l, m ) ] f t f .  (84) 
4,m 

Of course, if several growth reactions occur for different values of p, the 
equations (83) and (84) must be summed over p. Finally, the affinity for the 
reaction a(l, m) is 

ot+(t ,  m )  = m + t',,, - t~,+~ - t ' , , , -~ (85)  

As a second example, we consider the class of A-coagulation reactions 

a ( l , m , l ' ) , b ( I , m , i ' ) :  A, + B,,, + A, .~-A,+, , , , r  (86) 

The stoichiometric coefficients are 

Hence 

vs ' , .  =" - 3 l ' . z  - $1".r + 3 , ' . ,+ . ,+r  , v,.,.a = --3,,,..m (87) 

Aa = 1, A o . . . , . r ) - -  - -m (88) 

The reaction rates are 

d . . .  r ,  = o ~ . . ,  r ) f z f ~ A ' .  (89) 

with rate constants 

wo(,....,., ~ o(A,+,.+,.IA,B,.A,.) --  o)(! + m + 1'[1, m, I') 

o b ( , . m . , ' )  = oJ(A;B,.A,.IA,+,.+,.) -~ oJ(I, m, 1']! + m + !') (90) 

which satisfy the detailed balance relation 

w(! + m + i']i, m, l')u,v,.ur = w(/, m, l']l + m + l')u,+,.+,. (91) 

Jb(l .m,l ' )  ~ OJb(l ,m.l ' ) f l+m+l" 
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The rate equations read 

( ~ f , / e t ) -  I f ,  

Y'. [to(! i l', m, i ' )A ' f , , f t "  -- to(l', m, l" [ Oft] 
l e t m , l  ~ 

+ ~ ([co(/, m, t" I l + m + r)  + to(l', m, I I I' + m + l ) ] f t . , , . c  
lo,trrl 

- -  [ to(/+ m + 1' ] / ,m,  !') + to(l' + m + / l  1', m, 0]fzf,,,f~,) 

( e f , / e t ) -  Ffm 

---- ~ [to(/, m, l'1 1 + m + l')ft+m+t" - a,(l + m + 1' i'/, m,/)f , f , , , f , . ] '  
l , i  t 

The coagulation rate is (92) 

/ ' ( t )  = X [to(t + m + r i/ ,  m, t ' ) f , f . ,A .  - to(L m, t' l / + m + r)f,+.,+,.] 
i , m , l '  

and the rate of change of the A fraction is (93) 

~81Ot = p ~. m[to(t 4 m + l ' l  1, m, l')ftf,,,ft" 

-- to(/, m, 1' I I + m + t')A~m+,'] (94) 

Finally, the affinity for the reaction a(l, m, I') is 

6'/.(t,,,,.l, ) = /.q + / z , , ,  + /z t, - - / z t + , ~ +  t, ( 95 )  

The equations for the corresponding process of B-coagulation are easily 
found by a change of indices. 

As mentioned before, in many physical applications, the above processes 
will be the most important. The explicit values for the rate constants must be 
found from a detailed microscopic theory or from physical considerations. (t4~ 

9. D I S C U S S I O N  

We have studied the time-dependent statistics of  a class of  binary linear 
lattices characterized by a thermal equilibrium distribution for which clusters 
of  similar units are statistically independent. Our analysis has proceeded in 
two steps. On the basis of a Stosszahlansatz, we have first replaced the master 
equation (I) valid on the microscopic level by the master equation (15) for 
the probability distribution of occupation numbers of clusters. The variables 
of the latter equation are extensive, and as a second step. we have derived 
macroscopic rate equations for the densities of cluster species. The latter 
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procedure may be rigorously justified in the limit of  large systems. The rate 
equations are very similar to the equations of  chemical kinetics and we have 
studied their general properties in the framework of nonequilibrium thermo- 
dynamics. 

The macroscopic rate equations are nonlinear and are therefore difficult 
to solve analytically. On the other hand, the number of variables involved is 
enormously smaller than in the original master equation (1), or even (15), and 
the equations are amenable to numerical solution. At present, a computer 
study is in progress dealing with the rate equations (83) for p = I with rate 
constants corresponding to the helix-coil transition in polypeptides. 

The theory is of  particular interest for systems showing a phase transition 
and it opens the possibility of  investigating the kinetic processes near the 
transition point for relatively simple systems, such as polypeptides and 
polynucleotides. In this regard, it will be worthwhile to extend the theory to a 
study of  fluctuations. In I, we have evaluated the variances of the fluctuations 
in cluster occupation numbers in thermal equilibrium. As a natural further 
development of  the present theory, we intend to study time correlation 
functions of  equilibrium fluctuations. 
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